Advanced Graphics

Ray Tracing: Geometry and Lighting

Alex Benton, University of Cambridge – A.Bpnton@damtp.cam.ac.uk Supported in part by Google UK, Ltd

Ray tracing revisited

(Slide from Neil Dodgson's Computer Graphics and Image Processing notes, Cambridge University.)

Ray tracing

- The basic algorithm is straightforward
- Much room for subtlety
 - Refraction
 - Reflection
 - Shadows
 - Anti-aliasing
 - Blurred edges, depth-offield effects

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02}; struct sphere{ vec cen,color;double rad,kd,ks,kt,kl,ir}*s, *best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5, 1., .5, .2, 1., .7, .3, 0., .05, 1.2, 1., 8., -.5, .1, .8, .8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,6,1.5,-3.,-3.,12.,.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u, b, tmin, sqrt(), tan(); double vdot(A, B) vec A, B; {return A.x*B.x+A.y*B.y+A.z*B.z; }vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.v+=a*A.v;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);} struct sphere*intersect(P,D)vec P,D; {best=0;tmin=1e30;s= sph+5; while (s-->sph) b=vdot (D, U=vcomb(-1., P, s->cen)), u=b*bvdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?bu:b+u,tmin=u>=1e-7&&u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb; color=amb; eta=s->ir; d= -vdot(D, N=vunit(vcomb(-1., P=vcomb(tmin, D, P), s->cen))); if(d<0)N=vcomb(-1., N, black), eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl* vdot(N,U= vunit(vcomb(-1.,P,l->cen))))>0&& intersect(P,U)==1) color=vcomb(e ,l->color,color);U=s->color; color.x*=U.x; color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt (e),N,black))):black,vcomb(s->ks,trace(level, P,vcomb(2*d, N,D)),vcomb(s->kd, color,vcomb(s->kl,U,black)))); }main() {printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-</pre> 32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261), U=vcomb(255., trace(3,black,vunit(U)),black),printf("%.0f %.0f %.Of\n",U);}/*minray!*/

Paul Heckbert's 'minray' ray tracer, which fit on the back of his business card. (circa 1983)

Ray tracing

- The ray tracing time for a scene is a function of (num rays cast) X (num lights) X (num objects in scene) X (num reflective surfaces) X (ray reflection depth) X ...
- Contrast to polygon rasterization: time is a function of the number of elements in the scene times the number of lights.

(Scene from the realtime ray traced Quake 4)

The algorithm

For each pixel on the screen, do:

- 1. Calculate ray from eye (*O*) through pixel (*X*) Set D = (X-O) / |(X-O)|Ray: R=O+tD
- 2. Find ray/primitive hit point (*P*) and normal (*N*)
- 3. Compute shadow, reflection, transparency rays; recursively call steps 2—4
- 4. Calculate lighting of surface at point

Point-in-nonconvex-polygon

- *Ray casting* (1974)
 - Odd number of crossings = inside
 - Issues:
 - How to find a point that you *know* is inside?
 - What if the ray hits a vertex?
 - Best accelerated by working in 2D
 - You could transform all vertices such that the coordinate system of the polygon has normal = Z axis...
 - Or, you could observe that crossings are invariant under scaling transforms and just project along any axis by ignoring (for example) the Z component.
 - Validity proved by the Jordan curve theorem...

The Jordan curve theorem

- "Any simple closed curve C divides the points of the plane not on C into two distinct domains (with no ^C points in common) of which C is the common boundary."
 - First stated (but proved incorrectly) by Camille Jordan (1838 -1922) in his *Cours d'Analyse*.
- Sketch of proof : (For full proof see Courant & Robbins, 1941.)
 - Show that any point in A can be joined to any other point in A by a path which does not cross C, and likewise for B.
 - Show that any path connecting a point in A to a point in B *must* cross C.

B

The Jordan curve theorem on a sphere

• Note that the Jordan curve theorem can be extended to a curve on a sphere, or anything which is topologically equivalent to a sphere.

"Any simple closed curve on a sphere separates the surface of the sphere into two distinct regions."

Point-in-nonconvex-polygon

- Winding number (1980s)
 - The *winding number* of a point P in a curve C is the number of times that the curve wraps around the point.
 - For a simple closed curve (as any wellbehaved polygon should be) this will be zero if the point is outside the curve, non-zero of it's inside.
 - The winding number is the sum of the angles from v^i to P to v^{i+1} .
 - Caveat: This method is elegant but slow.

Figure from Eric Haines' "Point in Polygon Strategies", *Graphics Gems IV*, 1994

Point-in-convex-polygon

• Half-planes method

- Each edge defines an infinite halfplane covering the polygon. If the point *P* lies in all of the half-planes then it must be in the polygon.
- For each edge $e=v^i \rightarrow v^{i+1}$:
 - Rotate each edge 90° CCW around *N*.
 - If $e^{R_{\bullet}}(P-v^i) < 0$ then the point is outside *e*.
- Fastest known method.

Barycentric coordinates

- Barycentric coordinates (t_1, t_2, t_3) are a coordinate system for describing the location of a point *P* inside a triangle (A, B, C).
- (t₁,t₂,t₃) are the 'masses' to be placed at (A,B,C) respectively so that the center of gravity of the triangle lies at P.
- Interestingly, (t_1, t_2, t_3) are also proportional to the subtriangle areas.

Ray/sphere intersection

Ray R=O+tDSphere $S=\{P \mid P \bullet P=r^2\}$ (centered at the origin; radius *r*)

$$\begin{array}{l} (O+tD) \bullet (O+tD) = r^2 \\ (O_x + tD_x)^2 + (O_y + tD_y)^2 + (O_z + tD_z)^2 = r^2 \\ (O_x^2 + O_y^2 + O_z^2) + 2t(O_x D_x + O_y D_y + O_z D_z) + t^2 (D_x^2 + D_y^2 + D_z^2) - r^2 = 0 \\ t^2(D \bullet D) + 2t(O \bullet D) + (O \bullet O) - r^2 = 0 \end{array}$$

Solve the quadratic at your leisure... $t = (-(O \bullet D) \pm \sqrt{((O \bullet D)^2 - (D \bullet D)((O \bullet O) - r^2)))} / (D \bullet D)$

The normal on a sphere is easy: it's the point of intersection itself (normalized to unit length, of course.)

Primitives and world transforms

- Given a primitive P and its transform S, is it more efficient to find the intersection in screen space, world space or object space?
 - Not screen space: the transform from camera to screen coordinates is not affine, specifically it is not anglepreserving. This would prevent many nice optimizations, such as fast bounding box tests.
 - Our maths aren't optimized for world space; it would be nice to have each primitive encoded as statically as possible (ideally in assembler) with minimal parametrization.

Primitives and world transforms

- Object space, then.
- Find R = O + tD in object coords:
 - S is the local-to-world transform of P.
 - Invert S to find *S*⁻¹, the world-to-local transform.
 - Define $O_L = S^{-1}(O)$ and $D_L = S^{-1}(D)$.
 - The local ray: $R_L = O_L + t'D_L$
 - Solve for t' and find the world hit point at $S(R_L(t'))$.
- Wyvill (1995) (Part 2, p.45) compares the floating-point ops required to hit a sphere with a ray in world or local coordinates. He found that it is actually 37% more efficient, per ray, to intersect in local space.

Primitives and world transforms

- What about the normal?
 - If *S* is just a concatenated sequence of rotates and translates then the normal can be transformed by *S* as above.
 - Scales make things trickier.
- To find the world-space normal, multiply the local normal by the *transpose of the inverse* of *S*:

 $N=(S^{-1})^T N_L$

- Can ignore translations
- For any rotation Q, $(Q^{-1})^T = Q$
- Scaling is unaffected by transpose, and a scale of (*a*,*b*,*c*) becomes (*1/a*, *1/b*, *1/c*) when inverted

Lighting revisited

- We approximate lighting as the sum of the *ambient, diffuse,* and *specular* components of the light reflected to the eye.
 - Associate scalar parameters k_A , k_D and k_S with the surface.
 - Calculate diffuse and specular ^{*R*} from each light source separately.

Lighting revisited—ambient lighting

- Ambient light is a flat scalar constant, L_A .
 - The amount of ambient light L_A is a parameter of the scene; the way it illuminates a particular surface is a parameter of the surface.

18

- Some surfaces (ex: cotton wool) have high ambient coefficient k_A ; others (ex: steel tabletop) have low k_A .
- Lighting intensity for ambient light alone:

 $I_A(P) = k_A L_A$

Lighting revisited—diffuse lighting

- The *diffuse* coefficient k_D measures how much light *scatters* off the surface.
 - Some surfaces (e.g. skin) have high k_D, scattering light from many microscopic facets and breaks.
 Others (e.g. ball bearings) have low k_D.

 N_{\blacktriangle}

19

• Diffuse lighting intensity:

$$I_D(P) = k_D L_D(\cos \theta)$$
$$= k_D L_D(N \bullet L)$$

Lighting revisited—specular lighting

- The *specular* coefficient k_S measures how much light *reflects* off the surface.
 - A ball bearing has high k_s ; I don't.
 - 'Shininess' is approximated by a scalar power *n*.
- Specular lighting intensity:

 $I_{S}(P) = k_{S}L_{S}(\cos \alpha)^{n}$ = $k_{S}L_{S}(R \bullet E)^{n}$ = $k_{S}L_{S}((2(L \bullet N)N - L) \bullet E)^{n}$ R

• The *total* illumination at *P* is therefore:

$$I(P) = k_A L_A + \sum_{Lights} k_D L_D (L \bullet N) + k_S L_S (R \bullet E)^n$$

Spotlights

To create a spotlight shining along axis S, you can multiply the (diffuse+specular) term by (max(L•S,0))^m.

23

- Raising *m* will tighten the spotlight, but leave the edges soft.
- If you'd prefer a hard-edged spotlight of uniform internal intensity, you can use a conditional, e.g. ((L•S > cos(15°)) ? 1 : 0).

Ray tracing—Shadows

- To simulate shadow in ray tracing, fire a ray from *P* towards each light *L_i*. If the ray hits another object before the light, then discard *L_i* in the sum.
 - This is a boolean removal, so it will give *hard-edged* shadows.
 - Hard-edged shadows imply a pinpoint light source.

Softer shadows

- Shadows in nature are not sharp because light sources are not infinitely small.
 - Also because light scatters, etc.
- For lights with volume, fire many rays, covering the cross-section of your illuminated space.

25

- Illumination is (the total number of rays that aren't blocked) divided by (the total number of rays fired).
 - This is an example of *Monte-Carlo integration*: a coarse simulation of an integral over a space by randomly sampling it with many rays.
 - The more rays fired, the smoother the result.

Reflection

- *Reflection* rays are calculated by:
 R = 2(-*D*•*N*)*N*+*D*
 - ... just like the specular reflection ray.
 - Finding the reflected color is a recursive raycast.
 - Reflection has *scene-dependant* performance impact.

P

Q

Transparency

- To add transparency, generate and trace a new *transparency ray* with $O_T = P$, $D_T = D$.
- To support this in software, make color a 1x4 vector where the fourth component, 'alpha', determines the weight of the recursed transparency ray.

Refraction

• Snell's Law:

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$$

"The ratio of the sines of the *angles of incidence* of a ray of light at the interface between two materials is equal to the inverse ratio of the *refractive indices* of the materials is equal to the ratio of the speeds of light in the materials."

Historical note: this formula has been attributed to Willebrord Snell (1591-1626) and Rene' Descartes (1596-1650) but first discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

- The *angle of incidence* of a ray of light where it strikes a surface is the acute angle between the ray and the surface normal.
- The *refractive index* of a material is a measure of how much the speed of light¹ is reduced inside the material.
 - The refractive index of air is about 1.003.
 - The refractive index of water is about 1.33.

¹ Or sound waves or other waves

Refraction in ray tracing

$$\theta_1 = \cos^{-1}(N \bullet D)$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \longrightarrow \theta_2 = \sin^{-1} \left(\frac{n_1}{n_2} \sin \theta_2\right)$$

• Using Snell's Law and the angle of incidence of the incoming ray, we can calculate the angle from the negative normal to the outbound ray.

P'

 θ_2

 \boldsymbol{P}

N

θ

Refraction in ray tracing

- What if the arcsin parameter is > 1?
 Remember, arcsin is defined in [-1,1].
- We call this the *angle of total internal reflection*, where the light becomes trapped completely inside the surface.

Refractive index vs transparency

Refraction in action

References

Jordan curves

- R. Courant, H. Robbins, *What is Mathematics?*, Oxford University Press, 1941
- <u>http://cgm.cs.mcgill.ca/~godfried/teaching/cg-</u> projects/97/Octavian/compgeom.html

Point-in-polygon

- <u>http://tog.acm.org/editors/erich/ptinpoly/</u>
- http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing

- Foley & van Dam, *Computer Graphics* (1995)
- Jon Genetti and Dan Gordon, *Ray Tracing With Adaptive Supersampling in Object Space*, <u>http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html</u> (1993)
- Zack Waters, "Realistic Raytracing", <u>http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytrac</u> <u>ing.html</u>