
1

Advanced Graphics

Ray Tracing: Geometry and Lighting

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

2

Ray tracing revisited

(Slide from Neil Dodgson’s Computer Graphics and Image Processing notes, Cambridge University.)

3

Ray tracing

� The basic algorithm is
straightforward

� Much room for subtlety
• Refraction

• Reflection

• Shadows

• Anti-aliasing

• Blurred edges, depth-of-
field effects

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};
struct sphere{ vec cen,color;double rad,kd,ks,kt,kl,ir}*s,
*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-
.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-
3.,-3.,12.,.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double
u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return
A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec
A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec
vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-
vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-
u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u: tmin;return best;}vec
trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct
sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else
return amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-
1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl* vdot(N,U=
vunit(vcomb(-1.,P,l->cen))))>0&& intersect(P,U)==l)
color=vcomb(e ,l->color,color);U=s->color; color.x*=U.x;
color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s-
>kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks,trace(level, P,vcomb(2*d,
N,D)),vcomb(s->kd, color,vcomb(s->kl,U,black))));
}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-
32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),
U=vcomb(255., trace(3,black,vunit(U)),black),printf("%.0f %.0f
%.0f\n",U);}/*minray!*/

Paul Heckbert’s ‘minray’ ray tracer, which fit
on the back of his business card. (circa 1983)

4

Ray tracing

� The ray tracing time for
a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(ray reflection depth) x …

� Contrast to polygon
rasterization: time is a
function of the number of
elements in the scene times
the number of lights.

(Scene from the realtime ray traced Quake 4)

5

The algorithm

For each pixel on the screen, do:

1. Calculate ray from eye (O) through pixel (X)

Set D = (X-O) / |(X-O)|

Ray: R=O+tD

2. Find ray/primitive hit point (P) and normal (N)

3. Compute shadow, reflection, transparency rays;

recursively call steps 2—4

4. Calculate lighting of surface at point

6

Ray/plane intersection

Ray R=O+tD

Poly P={v1,…,vn}

N= (vn-v1)x(v2-v1)

N•(O+tD-v1)=0

Nx(Ox+tDx-vx
1) + Ny(Oy+tDy-vy

1) + Nz(Oz+tDz-vz
1)=0

NxOx+tNxDx-Nxvx
1 + NyOy+tNyDy-Nyvy

1 + NzOz+tNzDz-
Nzvz

1=0

tNxDx + tNyDy + tNzDz=Nxvx
1+Nyvy

1+Nzvz
1-NxOx-NyOy-NzOz

t = ((N•v1)-(N•O)) / (N•D)

Oc

N

D

O+tD

7

Point-in-nonconvex-polygon

� Ray casting (1974)
• Odd number of crossings = inside

• Issues:

• How to find a point that you know is inside?

• What if the ray hits a vertex?

• Best accelerated by working in 2D

• You could transform all vertices such that the coordinate
system of the polygon has normal = Z axis…

• Or, you could observe that crossings are invariant under
scaling transforms and just project along any axis by ignoring
(for example) the Z component.

• Validity proved by the Jordan curve theorem…

8

The Jordan curve theorem

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”

• First stated (but proved incorrectly) by Camille Jordan
(1838 -1922) in his Cours d'Analyse.

� Sketch of proof : (For full proof see Courant & Robbins, 1941.)

• Show that any point in A can be joined to any other point
in A by a path which does not cross C, and likewise for B.

• Show that any path connecting a point in A to a point in B
must cross C.

A

B

C

9

The Jordan curve theorem on a sphere

� Note that the Jordan curve theorem can be

extended to a curve on a sphere, or anything

which is topologically equivalent to a sphere.

“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

10

Point-in-nonconvex-polygon

� Winding number (1980s)
• The winding number of a point P in a

curve C is the number of times that the
curve wraps around the point.

• For a simple closed curve (as any well-
behaved polygon should be) this will
be zero if the point is outside the
curve, non-zero of it’s inside.

• The winding number is the sum of the
angles from vi to P to vi+1.

• Caveat: This method is elegant but
slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

11

Point-in-convex-polygon

� Half-planes method

• Each edge defines an infinite half-

plane covering the polygon. If the

point P lies in all of the half-planes

then it must be in the polygon.

• For each edge e=vi→vi+1:

• Rotate each edge 90˚ CCW around N.

• If eR•(P-vi) < 0 then the point is outside e.

• Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

12

Barycentric coordinates

� Barycentric coordinates (t1,t2,t3) are a

coordinate system for describing the

location of a point P inside a triangle

(A,B,C).

� (t1,t2,t3) are the ‘masses’ to be placed at

(A,B,C) respectively so that the center

of gravity of the triangle lies at P.

� Interestingly, (t1,t2,t3) are also

proportional to the subtriangle areas.

A

B

C

t1

t3

t2

t1+t3
P

A

B

C

t1

t3

t2

t1

t3

Q

13

Ray/sphere intersection

Ray R=O+tD

Sphere S={P | P•P=r2} (centered at the origin; radius r)

(O+tD) • (O+tD) = r2

(Ox+tDx)
2 + (Oy+tDy)

2 + (Oz+tDz)
2 = r2

(Ox
2+Oy

2+Oz
2) + 2t(OxDx+OyDy+OzDz) + t2 (Dx

2+Dy
2+Dz

2) – r2 = 0

t2(D•D) + 2t(O•D) + (O•O)–r2 = 0

Solve the quadratic at your leisure…

t = (-(O•D) ± √((O•D)2 - (D•D)((O•O)–r2))) / (D•D)

The normal on a sphere is easy: it’s the point of intersection itself
(normalized to unit length, of course.)

14

Primitives and world transforms

� Given a primitive P and its transform S, is it more

efficient to find the intersection in screen space,

world space or object space?

• Not screen space: the transform from camera to screen co-

ordinates is not affine, specifically it is not angle-

preserving. This would prevent many nice optimizations,

such as fast bounding box tests.

• Our maths aren’t optimized for world space; it would be

nice to have each primitive encoded as statically as possible

(ideally in assembler) with minimal parametrization.

15

Primitives and world transforms

� Object space, then.

� Find R = O+tD in object coords:

• S is the local-to-world transform of P.

• Invert S to find S-1, the world-to-local transform.

• Define OL=S-1(O) and DL=S-1(D).

• The local ray: RL = OL + t’DL

• Solve for t’ and find the world hit point at S(RL(t’)).

� Wyvill (1995) (Part 2, p.45) compares the floating-point ops
required to hit a sphere with a ray in world or local coordinates.
He found that it is actually 37% more efficient, per ray, to
intersect in local space.

16

Primitives and world transforms

� What about the normal?

• If S is just a concatenated sequence of rotates and
translates then the normal can be transformed by S as
above.

• Scales make things trickier.

� To find the world-space normal, multiply the local
normal by the transpose of the inverse of S:

N=(S-1)T NL

• Can ignore translations

• For any rotation Q, (Q-1)T=Q

• Scaling is unaffected by transpose, and a scale of
(a,b,c) becomes (1/a,1/b,1/c) when inverted

local

world

T

N
L

N
W

17

Lighting revisited

� We approximate lighting as the sum of the

ambient, diffuse, and specular components of

the light reflected to the eye.

• Associate scalar parameters

kA, kD and kS with the surface.

• Calculate diffuse and specular

from each light source separately.

O

N

D

P

R

L1

L2

18

Lighting revisited—ambient lighting

� Ambient light is a flat scalar constant, LA.

• The amount of ambient light LA is a parameter of the scene;

the way it illuminates a particular surface is a parameter of

the surface.

• Some surfaces (ex: cotton wool) have high ambient

coefficient kA; others (ex: steel tabletop) have low kA.

� Lighting intensity for ambient light alone:

AAA LkPI =)(

19

Lighting revisited—diffuse lighting

� The diffuse coefficient kD measures how

much light scatters off the surface.

• Some surfaces (e.g. skin) have high kD, scattering

light from many microscopic facets and breaks.

Others (e.g. ball bearings) have low kD.

� Diffuse lighting intensity:

)(

)(cos)(

LNLk

LkPI

DD

DDD

•=

= θ
N N

θ

L

L

20

Lighting revisited—specular lighting

� The specular coefficient kS measures how

much light reflects off the surface.

• A ball bearing has high kS; I don’t.

• ‘Shininess’ is approximated by a scalar power n.

� Specular lighting intensity:

n

SS

n

SS

n

SSS

ELk

ERLk

LkPI

)•L) N)N•2(L((

)•(

)(cos)(

−=

=

= α N

α L
R

E

21

Lighting revisited—all together

� The total illumination at P is therefore:

∑ ++=

Lights

n

SSDDAA ERLkNLLkLkPI)•()•()(

N

α L
R

E

θ

22

Ambient=1

Diffuse=0

Specular=0

Ambient=0

Diffuse=1

Specular=0

Ambient=0.2

Diffuse=0.4

Specular=0.4

(n=2)

Ambient=0

Diffuse=0

Specular=1

(n=2)

23

Spotlights

� To create a spotlight shining along axis S,
you can multiply the (diffuse+specular) term
by (max(L•S,0))m.

• Raising m will tighten the spotlight,
but leave the edges soft.

• If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

O
D

P

θ

L

S

24

� To simulate shadow in ray tracing, fire a ray

from P towards each light Li. If the ray hits

another object before the light, then discard

Li in the sum.

• This is a boolean removal, so it

will give hard-edged shadows.

• Hard-edged shadows imply a

pinpoint light source.

Ray tracing—Shadows

25

Softer shadows

� Shadows in nature are not sharp because light sources are not
infinitely small.

• Also because light scatters, etc.

� For lights with volume, fire many rays, covering the cross-
section of your illuminated space.

� Illumination is (the total number of rays
that aren’t blocked) divided by (the total
number of rays fired).

• This is an example of Monte-Carlo integration:
a coarse simulation of an integral over a space
by randomly sampling it with many rays.

• The more rays fired, the smoother the result.

O
D

P

L1

26

Reflection

� Reflection rays are calculated by:

R = 2(-D•N)N+D

…just like the specular reflection ray.

• Finding the reflected color is a

recursive raycast.

• Reflection has scene-dependant

performance impact.

O
D

P

L1

Q

27
num bounces=1

num bounces=0 num bounces=2

num bounces=3

28

Transparency

� To add transparency, generate and trace a new

transparency ray with OT=P, DT=D.

� To support this in software, make color a 1x4

vector where the fourth component, ‘alpha’,

determines the weight of the

recursed transparency ray.

29

Refraction

� Snell’s Law:

“The ratio of the sines of the angles of
incidence of a ray of light at the interface
between two materials is equal to the inverse
ratio of the refractive indices of the materials
is equal to the ratio of the speeds of light in
the materials.”

2

1

1

2

2

1

sin

sin

v

v

n

n
==

θ

θ

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and Rene’ Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and Rene’ Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

30

Refraction

� The angle of incidence of a ray of light

where it strikes a surface is the acute angle

between the ray and the surface normal.

� The refractive index of a material is a

measure of how much the speed of light1 is

reduced inside the material.

• The refractive index of air is about 1.003.

• The refractive index of water is about 1.33.

1 Or sound waves or other waves

31

Refraction in ray tracing

� Using Snell’s Law and the angle

of incidence of the incoming ray,

we can calculate the angle from

the negative normal to the

outbound ray.

O
D

P

P’

=→=

•=

−

−

1

2

11

2

1

2

2

1

1

1

sinsin
sin

sin

)(cos

θθ
θ

θ

θ

n

n

n

n

DN

N

θ1

θ2

32

Refraction in ray tracing

� What if the arcsin parameter is > 1?

• Remember, arcsin is defined in [-1,1].

� We call this the angle of total internal

reflection, where the light becomes

trapped completely inside the surface.

O
D

P

P’

=

−

1

2

11

2 sinsin θθ
n

n

N

θ1

θ2

Total internal

reflection

33

Refractive index vs transparency

n = 1.0 1.1 1.2 1.3 1.4 1.5

0
.2

5
0

.5
0

.7
5

t=
1

.0

Refraction in action

35

References

Jordan curves

� R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941

� http://cgm.cs.mcgill.ca/~godfried/teaching/cg-
projects/97/Octavian/compgeom.html

Point-in-polygon

� http://tog.acm.org/editors/erich/ptinpoly/

� http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing

� Foley & van Dam, Computer Graphics (1995)

� Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object
Space, http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)

� Zack Waters, “Realistic Raytracing”,
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytrac
ing.html

